PHYSICAL REVIEW E 70, 026606(2004)

Resonant phenomena in nonlinearly managed lattice solitons
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The formation of nonlinearly managed spatial solitons in Kerr-type nonlinear media with transverse periodic
modulation of the refractive index is considered. The phenomenon of resonant enhancement of lattice soliton
amplitude oscillations is reported. We show how the tunable discreteness and competition between such
characteristic scales as the beam width and the lattice period influence propagation dynamics and properties of
breathing lattice solitons.
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Laser beam self-action in nonlinear waveguide latticesamplitude oscillations due to NLM. Tunable discreteness al-
including primarily the formation of discrete solitons, is very lows us to control not only the spatial energy distribution in
important for such practical application as all-optical soliton|attice solitons but also their dynamical properties.

steering and switchingfor review, see Refq1,2] and refer- Propagation of optical radiation along thexis of a slab
ences therein The diffraction properties of such systems canwaveguide with harmonic modulation of the linear refractive
be controlled effectively providing rich possibilities for de- jndex in thex direction and management of cubic nonlinear-

signing photonic device$3,4]. The competition between ity is described by the nonlinear Schrédinger equation,
transverse characteristic scales of the problem, namely the

beam width and linear refractive index modulation period, dq aq 5

gives rise to a variety of propagation scenarig Addi- Ia_g =02 a(é)|a“a - pR(7)q. 1)
tional options are related to tunable discreteness, which alters

the system properties from fully continuous to fully discreteHere q(r;,g):(Ldif/Lm)l’ZA(r;,g)lal’z, A(7n, &) is the slowly
by varying the depth of refractive index modulatif§+9]. varying envelopelg is the peak input intensityy=x/r, rq is
From the other side, nonlinearity managemeéRLM) the transverse scalé=z/L 4, Ldif=nowr§/0, Ly=2¢/ wnylo,
proved to be an effective tool in nonlinear optics. The keyy, is the carrying frequency=L 4/ L, is the guiding param-
issue is that nonlinear structures with periodically varyingeter, L,.=c/(dnw), én is the refractive index modulation
nonlinearities permit the smooth tuning of the mean nonlinyepth, functiorR(7)=cos(Q, ) describes the transverse re-
earity value, which, in turn, offers the possibility to control ¢, ive index profile,, is the transverse modulation fre-

the soliton energy flow for fixed width. NLM has been suc- : — :
cessfully explored for the formation of three-dimensional 1"¢"Y: Wh|leo(§) Uo{l.+'“ sgr[cos(Qgg)]} describes the
symmetric steplike nonlinearity map with the mean value

light bullets [10]. It can potentially prevent beam collapse ) ) X o
[11] and improve optical pulse transmissid®?]. Fiber lasers 0o<0 (focusing nonlinearity longitudinal frequencytl,,

. v oAENEY
also contain NLM-based elemerjts3]. Notice that the NLM ~ nd depthu. Notice that the energy flow=/Z,[q|* d7 is a

concept has been recently applied to Bose-Einstein condeGOnserved quantity of Eq1). o o
sates using Feshbach resonance managefhént . Scenarios of laser beam propagation in the periodic lattice

In this context, photorefractive crystals are excellent canan Pe€ classified using the so-called renormalized soliton ap-
didates for experimental implementation of the lattice solitonPr0ach(3]. Within the framework of this approach, the soli-

concept[1]. Recently spatial optical solitons have been dem-t_On shape can be approximated  byq(7,&)
onstrated in arrays of photoinduced waveguified7,19. =% Secf‘iXﬂ)eXFﬂ(ﬁ(n,f)], Whe_re Jo Is the soliton -amph-
Such photoinduced structures offer opportunities to vary notude, x is the form factor or inverse width, ang is the
only the lattice periodscales competitionand refractive in- phase. No'te'that such a trial functhn does not take into ac-
dex modulation depthtunable discretenepsbut also the —count rad'at"{‘f Oloosszesé The evolution of the mean-square
value and sign of nonlinearitynonlinearity managemenby ~ Width (7)=U7Z,77[dl*d7 is then governed by the equa-
changing the polarity of applied electric field or rotation of tion [6,7]
the polarization of light. @2 2

Here we cons'ider thg impact of NLM on propagat@on a}nd F(,ﬁ) = 5[)(2 + o(&)q3]
excitation of lattice solitons in cubic nonlinear media with 3
imdprinted harr]moniﬁ trans(;/erse modulation ofd the refracltive ) 7, /2x 7, /2x 1| @
index. We show that under appropriate conditions, soliton - . -1
propagation in latticegespecially with big transverse peri- sinf(m(2,/2)) | tanh(m(2,/2x)
ods is accompanied with a resonant enhancement of solitoin the absence of nonlinearity management, whéf) = oy,

2
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20 4 (p,Q,) plane in Fig. 1b). This area corresponds to solitons
=0.25 (b) hn - : :
1% =u. 4 HF with rather deep shape modulati¢he profile of such soli-
] tons cannot be described with a sech-type fungtiand
S 10] 1 s 9l broadens with an increase of the guiding parameter. The for-
b bidden gap separates the area of soliton existence into low-
0.5] 0.5 1 k frequency(LF) and high-frequencyHF) domains. It is in
(a) LF these domains, where the linear refractive index modulation
0.0 A 0 - - - acts like a perturbation, the renormalized soliton properly
00 05 10 15 20
o1 29 848 describes the real soliton. Thus solitons from the LF domain
] p are weakly affected by harmonic modulation since they are

narrower than the lattice period, while the HF domain soli-
tons smooth over several lattice sites.

In the presence of NLM, the mean-square width, ampli-
tude, and form factor of lattice solitons breathe upon propa-
gation. For small longitudinal modulation depths<1, it is
instructive to consider the dynamics of small perturbations
Sx(§) < x of the form factory of the stationary renormalized
soliton that is related to its mean-square width gs
=7/ 12Y% p)12. Taking into account only the principal har-
monic of the steplike nonlinearity map and assuming
=-1, x=1, one arrives at

FIG. 1. Properties of renormalized solitons in the absence of 2 5 4ng 4MQc2)
NLM. (a) Energy flow vs transverse refractive index modulation 750X *+ | Qfree~ coqQé) [ox = cos(€2:),
. dé 7 7
frequency. (b) Cut-offs for transverse modulation frequency at
(p,,) plane.(c) Squared frequency of free form-factor oscillations (4)
vs transverse modulation frequency. Horizontal dashed lin@)in
stands foi)3,,=0. All quantities are plotted in arbitrary dimension-
less units. 5 8 4q5 12p ), /2 37}, 12
eree:___+_2 -

m @ @ sinh(@Q,/2)[ tan{7Q, 12)
Eq. (2) enables us to derive the condition of stationary lattice )
soliton propagation corresponding td{z?)/dé=0 and _(7Q,12) [COSH(WQn/Z)Jfl]_l]
dX77)/d&?=0. Assuming that the soliton form factor does tantf(m(,, /2)

not change upon propagation, one gets an expression for thifines the frequency of free oscillations of the perturbed
renormalized soliton amplitude, form factor along the axis in the absence of NLM. As one
2 can see from Eq(1), resonant frequency changes periodi-
@g=-X+ 3p _ mid,/2X [ )2 } (3)  cally along the¢ axis within the band Q2 .+ 4uq3/ 712 It

o opsinh(m(},/2x)| tank(m€),/2x) should be pointed out that for a general-type periodic func-
Energy flow of the renormalized lattice soliton is given by tion o(¢§)=o(§+2m/(,), the technique of its expansion into
U=2q3/ x. It is worth noticing that for the fixed form factor Fourier series can be applied as well and offers an opportu-
or width, the energy flow is inversely proportional to the nity to analyze qualitatively the dynamics of form-factor per-
mean value of nonlinearity,, which is important from a turbation for more complicated nonlinearity maps, including
practical point of view[19]. nonsymmetric ones.

Properties of renormalized solitons governed by Byin Figure Xc) shows the dependence 6f_, on transverse
the absence of NLM are summarized in Fig. 1, where wemodulation frequency),, for different guiding parameters
assumeoy=-1 and y=1 without loss of generality. Energy Notice that for(2, — 0 as well as foK), — , the frequency
flow of the lattice soliton is lower than that for a soliton with Qfee— 2/, Which corresponds to the frequency of form-
the same width in a uniform mediubecause of the pres- factor oscillations in the uniform medium. For+ 0, Eq.(4)
ence of guiding structure, lower light intensity is necessarydescribes forced vibrations of a parametrically driven har-
to support solitonlike propagatipnonly for intermediate monic oscillator. Therefore, in the areas witlf,.> 0, the
transverse modulation frequenci€s, [Fig. 1(@)], while at  usual (Q;=Qe) and the parametric(Q;=MQygee, M
low frequenciegwhen the soliton is well localized inside a =2,3,..) resonance of soliton oscillations are possible.
single focusing channehnd at high frequencie@vhen the  Physically, resonances occur because of the appropriate
soliton covers many lattice sitgshe lattice weakly affects swinging of intrinsic soliton oscillations by the periodic in-
soliton amplitude and energy flow. For weak guidify  crease or decrease of nonlinearity on the same or multiple
=0.52, shallow latticg the renormalized soliton exists for frequencies. Note also that because resonance frequency is
all values of(},, but for higher modulation depths there ap- modulated along th& axis, there appear resonance bands
pears a forbidden frequency gap centered arolpe-1.6.  rather than single resonances. In the area vﬂlh,e<0
The area of forbidden frequencies is shown in gray at thelower part of the HF bang soliton response to periodical

where

(5
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FIG. 3. Excitation of steadily breathing lattice solitons in non-
resonant conditiong(@) Evolution of integral soliton form factor
upon propagation ap=0.5, ,=4, Q.=4, u=1. (b) Profiles of
steadily breathing lattice solitons pt=0.5,Q,=4, (),=4, and dif-
ferent depths of longitudinal modulation of refractive index. In gray
regions functiorR(») <0, while in white regiondx(7) > 0. (c) Out-
put integral form factor and energy flo@inse) vs depths of longi-
tudinal modulation atp=0.5, ,=4, Q,=4. (d) Output integral
form factor and energy flowinse) vs longitudinal modulation fre-
quency atp=0.5,Q,=4, u=0.5. All quantities are plotted in arbi-
trary dimensionless units.

0 250 500 85 195 205
& axis Qe/ Qe
To show this, we solved Eql) numerically using the
FIG. 2. Resonance enhancement of lattice soliton width oscillarenormalized solitorfEq. (3)] as an input. Upon numerical
tior_ls in the presence of NLMa) Propagation dynamics of lattice integration, we followed the dynamics of the integral form
§0I|ton atp=0.5,0,=0.5,4=0.05, ar_lngz(_).%Eﬂfree correspond-  fgctor Xim(f):3U_2f°_°x|Q|4d7] that coincides withy for the
;Eg o tl.r;e uzual_ r;es(;mancéh) E'\\//Iolu_nonl of mtigrla! ftorm _{aCt?rtgf sech-type soliton, and correctly characterizes the behavior of
formefactor oecllafions &t Usual resonance. ve freduency rate CeNtFal energy-carying partof the beam even in the pres-
Q¢ Qpee (d) The same as in(@ but for x=0.1 and Q, S?(;:Sm;)f radiation, discriminating the low-intensity back-
=1.937%)4e Which corresponds to the first parametric resonance: L . . .
(e) Evolution of integral form factor of soliton depicted {d). (f) Figure 2a) S_hOWS Pmpagat_'?” of the soliton belonging to
Maximal spectral intensity of the form-factor oscillations at para-tN€ LF domain under conditions of usual resonarize
metric resonance vs frequency raiy/ Qe All quantities are ~ Qe While the corresponding dependence of the integral
plotted in arbitrary dimensionless units. form factor on propagation distance is depicted in Fidp).2
The strong linear growth of oscillations amplitude is evident
at the initial stage of propagatiof<50), while at longer
nonlinearity management is essentially nonresonant. distances one has a beating process with periodic restoration
This simplified picture gives only a qualitative explana- of input profile. This behavior is typical for dumped nonlin-
tion of the phenomenon of resonance enhancement of solitogar oscillators. It is the nonlinearity of large-amplitude form-
amplitude oscillations; real NLM soliton dynamics can befactor oscillations[not taken into account in Eq4)] that
more complicated, since in some regions soliton profile mayesults in frequency detuning and periodic diminishing of
not be adequately described by a sech-type fundser the amplitude. Fourier transformiy(Q) of the dependencéy(é)
gray region in Fig. {b)] and NLM itself inevitably produces has a global maximum in the vicinity d2.. The resonance
radiative lossegthat reach up to 20% from input soliton curve, defined here as the dependence of the peak spectral
energy for parameter ranges considetbdt are not captured intensity of form-factor oscillationsl ,=maxdx(Q)|> on
by the model. Nevertheless, we detected in computer simNLM frequency (), is shown in Fig. g). It should be
lations that key qualitative features predicted by Efj.are  pointed out that the resonance is str@gafost two orders of
valid. magnitude in intensity relatively narrow (approximately
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10% of the relative frequency detuningnd that the reso- lattice soliton from the renormalized hyperbolic secant pro-
nant curve is deeply modulated. The source of this modulafile starts with spectral broadening and the appearance of
tion is quite clear: the frequency of free oscillatioiigec i sidebands on spatial frequencie® #due to the phase modu-
altered periodically org within the interval of the width |ation produced by the harmonic lattice. Sidebands are para-
ﬁ)freezgl"iqo/ 7 Qfree [(IjETq. (@]2' |./e5bth|s "]:"drt]h determines  etrically amplified because of the cubic nonlinearity, and
the modulation periodl pog= 27/ Xlyee OF the resonance ., harametric amplification saturates steadily, the breath-
curve. Notice that the renormalized soliton from the LF band L . . : .
ing soliton is formed. Profiles of lattice solitons are depicted

is well localized within one focusing channel. During the . ® ~ f i | f lonaitudinal lati
soliton spreading, neighboring defocusing channels arl! Fi9- 3b) for different values of longitudinal modulation

gradually involved, the effective focusing action saturatesdepth. The growth ofu leads to the delocalization of the
and the resonant frequency diminishes, which corresponds #¢am and diminishes its energy flow. Figurgs)3and 3d)
soft-type nonlinearity. That is, this nonlinearity leads toillustrate the dependences of the output integral form factor
asymmetry of the resonance curfiég. 2(c)]. and energy flow on longitudinal modulation depth and fre-
Figures 2d)—2(f) illustrate lattice soliton behavior under quency, respectively. The output energy flow and the integral
conditions of first-order parametric resonan€e.~ 2(.).  form factor decrease monotonically with growth @f while
This resonance is also quite strong, and the correspondirgn increase of modulation frequency results in an increase of
resonance curve is even narrower than that for usual resehese soliton parameters.
nance. Notice that higher-order parametric resonances are |n conclusion, we have found the parameter areas where
also possible. . ' _ soliton propagation in NLM structures is accompanied by
Out of the resonance bands, steadily breathing lattice soliresonant growth of the amplitude oscillations, and the areas
tons are formed. In some cases, their profiles can be founghere soliton response on periodic nonlinearity management
with the numerical averaging methesee, €.9.[20] and ref- 5 essentially nonresonant, so that steadily breathing solitons
erences therejn Here we obtain such solitons by the direct can pe formed. NLM significantly enriches the possibilities
Iau_nchlng of renormalized §0I|tons mto.NLM structure and of light beam control since the spatial soliton energy is de-
their subsequent propagation at considerable distadces fined mainly by the average nonlinearity, and its localization

Thus, Fig. 8a) shows the evolution of the integral form fac- yepends on the nonlinearity modulation depth and frequency.
tor for the soliton from the HF band launched into NLM

structure with considerable longitudinal modulation depth Financial support from CONACyT under Grant No.
u=1. Soliton dynamics is nonresonant and the core latticé&J39681-F is gratefully acknowledged by V.A.V. Y.VK. ac-
soliton is formed att— . Formation of the true breathing knowledges support by the Generalitat de Catalunya.

[1] J. W. Fleischeet al., Nature(London 422 147 (2003. (2002.

[2] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature[12] M. J. Ablowitz and T. Hirooka, J. Opt. Soc. Am. B9, 425
(London) 424, 817 (2003. (2002.

[3] H. S. Eisenberget al, Phys. Rev. Lett.85, 1863(2000. [13] F. O. liday and F. W. Wise, J. Opt. Soc. Am. B, 470(2002.

[4] T. Pertschet al,, Phys. Rev. Lett.88, 093901(2002. [14] F. K. Abdullaevet al, Phys. Rev. A68, 053606(2003.

[5] R. Scharf and A. R. Bishop, Phys. Rev.4&, 1375(1993. [15] P. G. Kevrekidiset al, Phys. Rev. Lett.90, 230401(2003.

[6] V. V. Kartashovet al, Opt. Lett. 29, 766 (2004). [16] D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis,

[7] Y. V. Kartashovet al, Opt. Lett. 29, 1102(2004). Phys. Rev. Lett.91, 240201(2003.

[8] Y. V. Kartashovet al., Opt. Expressl2, 2831(2004). [17] N. K. Efremidiset al, Phys. Rev. E66, 046602(2002.

[9] Y. V. Kartashov, A. A. Egorov, L. Torner, and D. N. [18] D. Neshevet al, Opt. Lett. 28, 710(2003.
Christodoulidegunpublishegl [19] S. Turitsyn, T. Schaefer, and V. Mezentsev, Phys. Re&8E

[10] L. Torneret al, Opt. Commun.199 277 (2001). R5264(1998.

[11] I. Towers and B. A. Malomed, J. Opt. Soc. Am. B9, 537 [20] Y. V. Kartashovet al, Phys. Rev. E68, 026613(2003.

026606-4



