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The formation of nonlinearly managed spatial solitons in Kerr-type nonlinear media with transverse periodic
modulation of the refractive index is considered. The phenomenon of resonant enhancement of lattice soliton
amplitude oscillations is reported. We show how the tunable discreteness and competition between such
characteristic scales as the beam width and the lattice period influence propagation dynamics and properties of
breathing lattice solitons.
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Laser beam self-action in nonlinear waveguide lattices,
including primarily the formation of discrete solitons, is very
important for such practical application as all-optical soliton
steering and switching(for review, see Refs.[1,2] and refer-
ences therein). The diffraction properties of such systems can
be controlled effectively providing rich possibilities for de-
signing photonic devices[3,4]. The competition between
transverse characteristic scales of the problem, namely the
beam width and linear refractive index modulation period,
gives rise to a variety of propagation scenarios[5]. Addi-
tional options are related to tunable discreteness, which alters
the system properties from fully continuous to fully discrete
by varying the depth of refractive index modulation[6–9].

From the other side, nonlinearity management(NLM )
proved to be an effective tool in nonlinear optics. The key
issue is that nonlinear structures with periodically varying
nonlinearities permit the smooth tuning of the mean nonlin-
earity value, which, in turn, offers the possibility to control
the soliton energy flow for fixed width. NLM has been suc-
cessfully explored for the formation of three-dimensional
light bullets [10]. It can potentially prevent beam collapse
[11] and improve optical pulse transmission[12]. Fiber lasers
also contain NLM-based elements[13]. Notice that the NLM
concept has been recently applied to Bose-Einstein conden-
sates using Feshbach resonance management[14–16].

In this context, photorefractive crystals are excellent can-
didates for experimental implementation of the lattice soliton
concept[1]. Recently spatial optical solitons have been dem-
onstrated in arrays of photoinduced waveguides[1,17,18].
Such photoinduced structures offer opportunities to vary not
only the lattice period(scales competition) and refractive in-
dex modulation depth(tunable discreteness) but also the
value and sign of nonlinearity(nonlinearity management) by
changing the polarity of applied electric field or rotation of
the polarization of light.

Here we consider the impact of NLM on propagation and
excitation of lattice solitons in cubic nonlinear media with
imprinted harmonic transverse modulation of the refractive
index. We show that under appropriate conditions, soliton
propagation in lattices(especially with big transverse peri-
ods) is accompanied with a resonant enhancement of soliton

amplitude oscillations due to NLM. Tunable discreteness al-
lows us to control not only the spatial energy distribution in
lattice solitons but also their dynamical properties.

Propagation of optical radiation along thez axis of a slab
waveguide with harmonic modulation of the linear refractive
index in thex direction and management of cubic nonlinear-
ity is described by the nonlinear Schrödinger equation,
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Here qsh ,jd=sLdif /Lnld1/2Ash ,jdI0
−1/2, Ash ,jd is the slowly

varying envelope,I0 is the peak input intensity,h=x/ r0, r0 is
the transverse scale,j=z/Ldif, Ldif =n0vr0

2/c, Lnl=2c/vn2I0,
v is the carrying frequency,p=Ldif /Lref is the guiding param-
eter, Lref=c/ sdnvd, dn is the refractive index modulation
depth, functionRshd=cossVhhd describes the transverse re-
fractive index profile,Vh is the transverse modulation fre-
quency, whilessjd=s0h1+m sgnfcossVjjdgj describes the
symmetric steplike nonlinearity map with the mean value
s0,0 (focusing nonlinearity), longitudinal frequencyVj,
and depthm. Notice that the energy flowU=e−`

` uqu2 dh is a
conserved quantity of Eq.(1).

Scenarios of laser beam propagation in the periodic lattice
can be classified using the so-called renormalized soliton ap-
proach[5]. Within the framework of this approach, the soli-
ton shape can be approximated byqsh ,jd
=q0 sechsxhdexpfifsh ,jdg, where q0 is the soliton ampli-
tude, x is the form factor or inverse width, andf is the
phase. Note that such a trial function does not take into ac-
count radiative losses. The evolution of the mean-square
width kh2l=U−1e−`

` h2uqu2dh is then governed by the equa-
tion [6,7]
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In the absence of nonlinearity management, whenssjd;s0,
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Eq. (2) enables us to derive the condition of stationary lattice
soliton propagation corresponding todkh2l /dj=0 and
d2kh2l /dj2=0. Assuming that the soliton form factor does
not change upon propagation, one gets an expression for the
renormalized soliton amplitude,
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Energy flow of the renormalized lattice soliton is given by
U=2q0

2/x. It is worth noticing that for the fixed form factor
or width, the energy flow is inversely proportional to the
mean value of nonlinearitys0, which is important from a
practical point of view[19].

Properties of renormalized solitons governed by Eq.(3) in
the absence of NLM are summarized in Fig. 1, where we
assumes0=−1 andx=1 without loss of generality. Energy
flow of the lattice soliton is lower than that for a soliton with
the same width in a uniform medium(because of the pres-
ence of guiding structure, lower light intensity is necessary
to support solitonlike propagation) only for intermediate
transverse modulation frequenciesVh [Fig. 1(a)], while at
low frequencies(when the soliton is well localized inside a
single focusing channel) and at high frequencies(when the
soliton covers many lattice sites), the lattice weakly affects
soliton amplitude and energy flow. For weak guiding(p
&0.52, shallow lattice), the renormalized soliton exists for
all values ofVh, but for higher modulation depths there ap-
pears a forbidden frequency gap centered aroundVh.1.6.
The area of forbidden frequencies is shown in gray at the

sp,Vhd plane in Fig. 1(b). This area corresponds to solitons
with rather deep shape modulation(the profile of such soli-
tons cannot be described with a sech-type function) and
broadens with an increase of the guiding parameter. The for-
bidden gap separates the area of soliton existence into low-
frequency(LF) and high-frequency(HF) domains. It is in
these domains, where the linear refractive index modulation
acts like a perturbation, the renormalized soliton properly
describes the real soliton. Thus solitons from the LF domain
are weakly affected by harmonic modulation since they are
narrower than the lattice period, while the HF domain soli-
tons smooth over several lattice sites.

In the presence of NLM, the mean-square width, ampli-
tude, and form factor of lattice solitons breathe upon propa-
gation. For small longitudinal modulation depthsm!1, it is
instructive to consider the dynamics of small perturbations
dxsjd!x of the form factorx of the stationary renormalized
soliton that is related to its mean-square width asx
=p /121/2khl1/2. Taking into account only the principal har-
monic of the steplike nonlinearity map and assumings0
=−1, x=1, one arrives at
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defines the frequency of free oscillations of the perturbed
form factor along thej axis in the absence of NLM. As one
can see from Eq.(1), resonant frequency changes periodi-
cally along thej axis within the bandfVfree

2 ±4mq0
2/p2g1/2. It

should be pointed out that for a general-type periodic func-
tion ssjd=ssj+2p /Vjd, the technique of its expansion into
Fourier series can be applied as well and offers an opportu-
nity to analyze qualitatively the dynamics of form-factor per-
turbation for more complicated nonlinearity maps, including
nonsymmetric ones.

Figure 1(c) shows the dependence ofVfree
2 on transverse

modulation frequencyVh for different guiding parametersp.
Notice that forVh→0 as well as forVh→`, the frequency
Vfree→2/p, which corresponds to the frequency of form-
factor oscillations in the uniform medium. FormÞ0, Eq.(4)
describes forced vibrations of a parametrically driven har-
monic oscillator. Therefore, in the areas withVfree

2 .0, the
usual sVj=Vfreed and the parametricsVj=mVfree, m
=2,3, . . .d resonance of soliton oscillations are possible.
Physically, resonances occur because of the appropriate
swinging of intrinsic soliton oscillations by the periodic in-
crease or decrease of nonlinearity on the same or multiple
frequencies. Note also that because resonance frequency is
modulated along thej axis, there appear resonance bands
rather than single resonances. In the area withVfree

2 ,0
(lower part of the HF band), soliton response to periodical

FIG. 1. Properties of renormalized solitons in the absence of
NLM. (a) Energy flow vs transverse refractive index modulation
frequency. (b) Cut-offs for transverse modulation frequency at
sp,Vhd plane.(c) Squared frequency of free form-factor oscillations
vs transverse modulation frequency. Horizontal dashed line in(c)
stands forVfree

2 =0. All quantities are plotted in arbitrary dimension-
less units.
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nonlinearity management is essentially nonresonant.
This simplified picture gives only a qualitative explana-

tion of the phenomenon of resonance enhancement of soliton
amplitude oscillations; real NLM soliton dynamics can be
more complicated, since in some regions soliton profile may
not be adequately described by a sech-type function[see the
gray region in Fig. 1(b)] and NLM itself inevitably produces
radiative losses(that reach up to 20% from input soliton
energy for parameter ranges considered) that are not captured
by the model. Nevertheless, we detected in computer simu-
lations that key qualitative features predicted by Eq.(4) are
valid.

To show this, we solved Eq.(1) numerically using the
renormalized soliton[Eq. (3)] as an input. Upon numerical
integration, we followed the dynamics of the integral form
factor xintsjd=3U−2e−`

` uqu4dh that coincides withx for the
sech-type soliton, and correctly characterizes the behavior of
the central energy-carrying part of the beam even in the pres-
ence of radiation, discriminating the low-intensity back-
ground.

Figure 2(a) shows propagation of the soliton belonging to
the LF domain under conditions of usual resonanceVj

<Vfree, while the corresponding dependence of the integral
form factor on propagation distance is depicted in Fig. 2(b).
The strong linear growth of oscillations amplitude is evident
at the initial stage of propagationsj,50d, while at longer
distances one has a beating process with periodic restoration
of input profile. This behavior is typical for dumped nonlin-
ear oscillators. It is the nonlinearity of large-amplitude form-
factor oscillations[not taken into account in Eq.(4)] that
results in frequency detuning and periodic diminishing of
amplitude. Fourier transformdxsVd of the dependencedxsjd
has a global maximum in the vicinity ofVj. The resonance
curve, defined here as the dependence of the peak spectral
intensity of form-factor oscillationsIV=maxudxsVdu2 on
NLM frequency Vj, is shown in Fig. 2(c). It should be
pointed out that the resonance is strong(almost two orders of
magnitude in intensity), relatively narrow (approximately

FIG. 2. Resonance enhancement of lattice soliton width oscilla-
tions in the presence of NLM.(a) Propagation dynamics of lattice
soliton atp=0.5,Vh=0.5,m=0.05, andVj=0.965Vfree correspond-
ing to the usual resonance.(b) Evolution of integral form factor of
the soliton depicted in(a). (c) Maximal spectral intensity of the
form-factor oscillations at usual resonance vs frequency ratio
Vj /Vfree. (d) The same as in(a) but for m=0.1 and Vj

=1.9375Vfree, which corresponds to the first parametric resonance.
(e) Evolution of integral form factor of soliton depicted in(d). (f)
Maximal spectral intensity of the form-factor oscillations at para-
metric resonance vs frequency ratioVj /Vfree. All quantities are
plotted in arbitrary dimensionless units.

FIG. 3. Excitation of steadily breathing lattice solitons in non-
resonant conditions.(a) Evolution of integral soliton form factor
upon propagation atp=0.5, Vh=4, Vj=4, m=1. (b) Profiles of
steadily breathing lattice solitons atp=0.5, Vh=4, Vj=4, and dif-
ferent depths of longitudinal modulation of refractive index. In gray
regions functionRshdø0, while in white regionsRshd.0. (c) Out-
put integral form factor and energy flow(inset) vs depths of longi-
tudinal modulation atp=0.5, Vh=4, Vj=4. (d) Output integral
form factor and energy flow(inset) vs longitudinal modulation fre-
quency atp=0.5, Vh=4, m=0.5. All quantities are plotted in arbi-
trary dimensionless units.
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10% of the relative frequency detuning), and that the reso-
nant curve is deeply modulated. The source of this modula-
tion is quite clear: the frequency of free oscillationsVfree is
altered periodically onj within the interval of the width
dVfree.4mq0

2/p2Vfree [Eq. (4)], i.e., this width determines
the modulation periodTmod<2p /dVfree of the resonance
curve. Notice that the renormalized soliton from the LF band
is well localized within one focusing channel. During the
soliton spreading, neighboring defocusing channels are
gradually involved, the effective focusing action saturates,
and the resonant frequency diminishes, which corresponds to
soft-type nonlinearity. That is, this nonlinearity leads to
asymmetry of the resonance curve[Fig. 2(c)].

Figures 2(d)–2(f) illustrate lattice soliton behavior under
conditions of first-order parametric resonancesVj<2Vfreed.
This resonance is also quite strong, and the corresponding
resonance curve is even narrower than that for usual reso-
nance. Notice that higher-order parametric resonances are
also possible.

Out of the resonance bands, steadily breathing lattice soli-
tons are formed. In some cases, their profiles can be found
with the numerical averaging method(see, e.g.,[20] and ref-
erences therein). Here we obtain such solitons by the direct
launching of renormalized solitons into NLM structure and
their subsequent propagation at considerable distancesj.
Thus, Fig. 3(a) shows the evolution of the integral form fac-
tor for the soliton from the HF band launched into NLM
structure with considerable longitudinal modulation depth
m=1. Soliton dynamics is nonresonant and the core lattice
soliton is formed atj→`. Formation of the true breathing

lattice soliton from the renormalized hyperbolic secant pro-
file starts with spectral broadening and the appearance of
sidebands on spatial frequencies ±Vh due to the phase modu-
lation produced by the harmonic lattice. Sidebands are para-
metrically amplified because of the cubic nonlinearity, and
when parametric amplification saturates steadily, the breath-
ing soliton is formed. Profiles of lattice solitons are depicted
in Fig. 3(b) for different values of longitudinal modulation
depth. The growth ofm leads to the delocalization of the
beam and diminishes its energy flow. Figures 3(c) and 3(d)
illustrate the dependences of the output integral form factor
and energy flow on longitudinal modulation depth and fre-
quency, respectively. The output energy flow and the integral
form factor decrease monotonically with growth ofm, while
an increase of modulation frequency results in an increase of
these soliton parameters.

In conclusion, we have found the parameter areas where
soliton propagation in NLM structures is accompanied by
resonant growth of the amplitude oscillations, and the areas
where soliton response on periodic nonlinearity management
is essentially nonresonant, so that steadily breathing solitons
can be formed. NLM significantly enriches the possibilities
of light beam control since the spatial soliton energy is de-
fined mainly by the average nonlinearity, and its localization
depends on the nonlinearity modulation depth and frequency.
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